Learning Parameter-Advising Sets for Multiple Sequence Alignment

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment

Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignm...

متن کامل

Dynamic use of multiple parameter sets in sequence alignment

The level of conservation between two homologous sequences often varies among sequence regions; functionally important domains are more conserved than the remaining regions. Thus, multiple parameter sets should be used in alignment of homologous sequences with a stringent parameter set for highly conserved regions and a moderate parameter set for weakly conserved regions. We describe an alignme...

متن کامل

Automatic Parameter Learning for Multiple Network Alignment

We developed Græmlin 2.0, a new multiple network aligner with (1) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (2) a parameter learning algorithm that uses a training set of known network alignments to learn parameters for our scoring function and thereby adap...

متن کامل

Multiple Sequence Alignment Multiple Sequence Alignment

An algorithm for progressive multiple alignment of sequences with insertions " , 1. Introduction The problem of sequence alignment is to find the patterns of sequence conservation and similarity between pairs or sets of given sequences. In biological contexts, similarity between biological sequences usually amounts to either functional or structural similarities or divergence from a common ance...

متن کامل

Automatic Parameter Learning for Multiple Local Network Alignment JASON

We developed Græmlin 2.0, a new multiple network aligner with (1) a new multi-stage approach to local network alignment; (2) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (3) a parameter learning algorithm that uses a training set of known network alignments to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics

سال: 2017

ISSN: 1545-5963,1557-9964,2374-0043

DOI: 10.1109/tcbb.2015.2430323